3.10.66 \(\int \frac {1}{x^5 \sqrt {16-x^4}} \, dx\) [966]

Optimal. Leaf size=39 \[ -\frac {\sqrt {16-x^4}}{64 x^4}-\frac {1}{256} \tanh ^{-1}\left (\frac {\sqrt {16-x^4}}{4}\right ) \]

[Out]

-1/256*arctanh(1/4*(-x^4+16)^(1/2))-1/64*(-x^4+16)^(1/2)/x^4

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {272, 44, 65, 212} \begin {gather*} -\frac {\sqrt {16-x^4}}{64 x^4}-\frac {1}{256} \tanh ^{-1}\left (\frac {\sqrt {16-x^4}}{4}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^5*Sqrt[16 - x^4]),x]

[Out]

-1/64*Sqrt[16 - x^4]/x^4 - ArcTanh[Sqrt[16 - x^4]/4]/256

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^5 \sqrt {16-x^4}} \, dx &=\frac {1}{4} \text {Subst}\left (\int \frac {1}{\sqrt {16-x} x^2} \, dx,x,x^4\right )\\ &=-\frac {\sqrt {16-x^4}}{64 x^4}+\frac {1}{128} \text {Subst}\left (\int \frac {1}{\sqrt {16-x} x} \, dx,x,x^4\right )\\ &=-\frac {\sqrt {16-x^4}}{64 x^4}-\frac {1}{64} \text {Subst}\left (\int \frac {1}{16-x^2} \, dx,x,\sqrt {16-x^4}\right )\\ &=-\frac {\sqrt {16-x^4}}{64 x^4}-\frac {1}{256} \tanh ^{-1}\left (\frac {\sqrt {16-x^4}}{4}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 39, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {16-x^4}}{64 x^4}-\frac {1}{256} \tanh ^{-1}\left (\frac {\sqrt {16-x^4}}{4}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*Sqrt[16 - x^4]),x]

[Out]

-1/64*Sqrt[16 - x^4]/x^4 - ArcTanh[Sqrt[16 - x^4]/4]/256

________________________________________________________________________________________

Maple [A]
time = 0.23, size = 30, normalized size = 0.77

method result size
default \(-\frac {\sqrt {-x^{4}+16}}{64 x^{4}}-\frac {\arctanh \left (\frac {4}{\sqrt {-x^{4}+16}}\right )}{256}\) \(30\)
elliptic \(-\frac {\sqrt {-x^{4}+16}}{64 x^{4}}-\frac {\arctanh \left (\frac {4}{\sqrt {-x^{4}+16}}\right )}{256}\) \(30\)
trager \(-\frac {\sqrt {-x^{4}+16}}{64 x^{4}}-\frac {\ln \left (\frac {\sqrt {-x^{4}+16}+4}{x^{2}}\right )}{256}\) \(34\)
risch \(\frac {x^{4}-16}{64 x^{4} \sqrt {-x^{4}+16}}-\frac {\arctanh \left (\frac {4}{\sqrt {-x^{4}+16}}\right )}{256}\) \(35\)
meijerg \(-\frac {-\frac {2 \sqrt {\pi }\, \left (-\frac {x^{4}}{4}+8\right )}{x^{4}}+\frac {16 \sqrt {\pi }\, \sqrt {1-\frac {x^{4}}{16}}}{x^{4}}+\sqrt {\pi }\, \ln \left (\frac {1}{2}+\frac {\sqrt {1-\frac {x^{4}}{16}}}{2}\right )-\frac {\left (1-6 \ln \left (2\right )+4 \ln \left (x \right )+i \pi \right ) \sqrt {\pi }}{2}+\frac {16 \sqrt {\pi }}{x^{4}}}{256 \sqrt {\pi }}\) \(84\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(-x^4+16)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/64*(-x^4+16)^(1/2)/x^4-1/256*arctanh(4/(-x^4+16)^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 43, normalized size = 1.10 \begin {gather*} -\frac {\sqrt {-x^{4} + 16}}{64 \, x^{4}} - \frac {1}{512} \, \log \left (\sqrt {-x^{4} + 16} + 4\right ) + \frac {1}{512} \, \log \left (\sqrt {-x^{4} + 16} - 4\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(-x^4+16)^(1/2),x, algorithm="maxima")

[Out]

-1/64*sqrt(-x^4 + 16)/x^4 - 1/512*log(sqrt(-x^4 + 16) + 4) + 1/512*log(sqrt(-x^4 + 16) - 4)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 50, normalized size = 1.28 \begin {gather*} -\frac {x^{4} \log \left (\sqrt {-x^{4} + 16} + 4\right ) - x^{4} \log \left (\sqrt {-x^{4} + 16} - 4\right ) + 8 \, \sqrt {-x^{4} + 16}}{512 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(-x^4+16)^(1/2),x, algorithm="fricas")

[Out]

-1/512*(x^4*log(sqrt(-x^4 + 16) + 4) - x^4*log(sqrt(-x^4 + 16) - 4) + 8*sqrt(-x^4 + 16))/x^4

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 0.98, size = 75, normalized size = 1.92 \begin {gather*} \begin {cases} - \frac {\operatorname {acosh}{\left (\frac {4}{x^{2}} \right )}}{256} + \frac {1}{64 x^{2} \sqrt {-1 + \frac {16}{x^{4}}}} - \frac {1}{4 x^{6} \sqrt {-1 + \frac {16}{x^{4}}}} & \text {for}\: \frac {1}{\left |{x^{4}}\right |} > \frac {1}{16} \\\frac {i \operatorname {asin}{\left (\frac {4}{x^{2}} \right )}}{256} - \frac {i \sqrt {1 - \frac {16}{x^{4}}}}{64 x^{2}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(-x**4+16)**(1/2),x)

[Out]

Piecewise((-acosh(4/x**2)/256 + 1/(64*x**2*sqrt(-1 + 16/x**4)) - 1/(4*x**6*sqrt(-1 + 16/x**4)), 1/Abs(x**4) >
1/16), (I*asin(4/x**2)/256 - I*sqrt(1 - 16/x**4)/(64*x**2), True))

________________________________________________________________________________________

Giac [A]
time = 1.47, size = 45, normalized size = 1.15 \begin {gather*} -\frac {\sqrt {-x^{4} + 16}}{64 \, x^{4}} - \frac {1}{512} \, \log \left (\sqrt {-x^{4} + 16} + 4\right ) + \frac {1}{512} \, \log \left (-\sqrt {-x^{4} + 16} + 4\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(-x^4+16)^(1/2),x, algorithm="giac")

[Out]

-1/64*sqrt(-x^4 + 16)/x^4 - 1/512*log(sqrt(-x^4 + 16) + 4) + 1/512*log(-sqrt(-x^4 + 16) + 4)

________________________________________________________________________________________

Mupad [B]
time = 1.19, size = 29, normalized size = 0.74 \begin {gather*} -\frac {\mathrm {atanh}\left (\frac {\sqrt {16-x^4}}{4}\right )}{256}-\frac {\sqrt {16-x^4}}{64\,x^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^5*(16 - x^4)^(1/2)),x)

[Out]

- atanh((16 - x^4)^(1/2)/4)/256 - (16 - x^4)^(1/2)/(64*x^4)

________________________________________________________________________________________